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About me

* Programming for 20 yrs
* ColdFusion for 10 yrs (since 4.5)
* CT of Med-E-Serv

* Now moving to U of Q
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Introduction

the waterfall process

CF
CF + Java

CWTF + Jawhat?

Java + CF
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What is a domain layer?
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What is a domain model?

* Representation in code of domain
expertise

* Independent of any one application
* See Fowler POEAA
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Truth in modelling

* Model defines what is
true

* Model is the guardian of
data integrity

* Every operation that is
possible should be valid
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Why a domain model?

* Captures abstract ideas in
concrete form

* Can be a significant IP asset

* A great API will guide and
shape applications built on it



Why Java

* Fast = fewer implementation compromises
= a clearer model

* Deployment possibilities
* Tools
* Frameworks
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Java domain layer

* Spring for DI
* POJOs for domain model
* Hibernate for ORM



m
Java domain layer - plumbing

* Hibernate Validator

* Commons collections

* Commons beanutils

* C3P0 connection pooling
 EHCache

* Aspectd
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Simplest Hibernate

* Show code
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Simplest Hibernate+Spring

* Show code
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Hide some plumbing

 Store the SessionFactory in Application
* Cache current Session in Request
* Still explicitly open/close transactions

* OR, use aspects to make selected
methods transactional
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We're donel!

We now have the full
power of Spring and
Hibernate at our
fingertips.
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Or do we...?
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Some gotchas

* Page lifecycle problems
* Distributed transactions
* ThreadLocal

* Classloader globals



m
Page lifecycle

* OnRequestStart() is always called, even
after a cflocation

* OnRequestEnd() will NOT be called on a
cflocation or a cfabort

* OnError() will reliably be called on any
exception, even one from the Java code.



Page lifecycle (ctd)

* Use the underlying servlet life cycle where
guaranteed cleanup is required.

* e.g. dangling transactions after a rogue
cflocation

* Note that cftransactions ARE cleaned up
after cflocation
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Distributed transactions

* Transactions are essentially one-per-
thread

* If we have more than one SessionFactory
we need multiple connections in the same
transaction.

* That means JTA with XA datasources

* Complex, slow and actually not very
reliable.
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Distributed transactions (ctd)

* Avoid having more than one
SessionFactory

* Plug multiple frameworks into a
“framework coordinator” which provides
the SessionFactory and
TransactionManager

* Not completely black box but not too bad.



m
ThreadLocals

* Variables that are bound to the thread
* Java frameworks use these regularly

* In a thread-pooling environment reliable
cleanup is absolutely essential

* CF does not provide reliable cleanup for
ColdFusion code
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ThreadlLocals (ctd)

* Do not initialize Java frameworks from
ColdFusion

* Do transaction cleanup etc at the
ServletContext level



- ¢ CF.Objectivel

Classloader globals

* Entities that are global within a classloader
i.e. within the whole of the CF server

 Static variables and methods
* Aspectd aspects
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Classloader globals (ctd)

* Any use of Aspectd AOP within Spring can
leak

* Once again, can't “black box” Spring
contexts

* Can solve via a custom classloader (e.qg.
Javal.oader)
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CF deployment environment

Java

JRun

ColdFusion Java web app

Servlet filters

CFMServlet

CFML code

CreateObject(“java’,...) classes

Javal.oader classes

Other servlets
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At the servlet level

* Load the Spring context

* Use the Spring OSIV filter to make a
Hibernate session available

* Create a transaction filter to clean up
dangling transactions

* Put the Spring context into the Request
scope
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At the servlet level (ctd)

* Our domain classes must be on the Jrun
classpath, NOT the CF classpath

* That means we can't CreateObject() them

* All access to domain is via
Request.applicationContext

* Some issues with XML parsers
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At the CFML level

* Grab a service object from the Spring
context

* Access the domain via transactional
service methods

* May also explicitly create a transaction for
ad hoc manipulation of domain objects
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Show code

* Hibernate's transitive persistence

* Spring AOP DI into transients

* Spring AOP transaction manager

* Spring “open session in view”

* Spring context hierarchy for multiple
domain models



m
Conclusions

* These frameworks come from the JEE
world

* Slot them into the JEE stack where they
expect to go, and everything is fine

* Ignoring the Java environment underlying

ColdFusion is a luxury you can no longer
afford.
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Questions

jmetcher@gmail.com
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