USING A JAVA DOMAIN
LAYER WITH
COLDFUSION

Jaime Metcher

f © CrF.Objectivel



About me

* Programming for 20 yrs
* ColdFusion for 10 yrs (since 4.5)
* CT of Med-E-Serv

* Now moving to U of Q



- T CF.Objectivel)

Introduction

the waterfall process

CF
CF + Java

CWTF + Jawhat?

Java + CF



- © CrF.Objectivel
What is a domain layer?




- T CrF.Objectivel)
What is a domain model?

* Representation in code of domain
expertise

* Independent of any one application
* See Fowler POEAA



- © CF.Objectivel
Truth in modelling

* Model defines what is
true

* Model is the guardian of
data integrity

* Every operation that is
possible should be valid



- ¢ CF.Objectivel

Why a domain model?

* Captures abstract ideas in
concrete form

* Can be a significant IP asset

* A great API will guide and
shape applications built on it



Why Java

* Fast = fewer implementation compromises
= a clearer model

* Deployment possibilities
* Tools
* Frameworks



- T CFr.Objectivel

Java domain layer

* Spring for DI
* POJOs for domain model
* Hibernate for ORM



m
Java domain layer - plumbing

* Hibernate Validator

* Commons collections

* Commons beanutils

* C3P0 connection pooling
 EHCache

* Aspectd



- T CF.Objectivel)

Simplest Hibernate

* Show code



- © CrF.Objectivel
Simplest Hibernate+Spring

* Show code



=' % CrObjectivel
Hide some plumbing

 Store the SessionFactory in Application
* Cache current Session in Request
* Still explicitly open/close transactions

* OR, use aspects to make selected
methods transactional



- T CF.Objectivel
We're donel!

We now have the full
power of Spring and
Hibernate at our
fingertips.



- T CFr.Objectivel

Or do we...?



- ¢ CF.Objectivel

Some gotchas

* Page lifecycle problems
* Distributed transactions
* ThreadLocal

* Classloader globals



m
Page lifecycle

* OnRequestStart() is always called, even
after a cflocation

* OnRequestEnd() will NOT be called on a
cflocation or a cfabort

* OnError() will reliably be called on any
exception, even one from the Java code.



Page lifecycle (ctd)

* Use the underlying servlet life cycle where
guaranteed cleanup is required.

* e.g. dangling transactions after a rogue
cflocation

* Note that cftransactions ARE cleaned up
after cflocation



S % CF.Objectivel
Distributed transactions

* Transactions are essentially one-per-
thread

* If we have more than one SessionFactory
we need multiple connections in the same
transaction.

* That means JTA with XA datasources

* Complex, slow and actually not very
reliable.



S % CF.Objectivel
Distributed transactions

* Transactions are essentially one-per-
thread

* If we have more than one SessionFactory
we need multiple connections in the same
transaction.

* That means JTA with XA datasources

* Complex, slow and actually not very
reliable.



I & CF.Objectivel
Distributed transactions (ctd)

* Avoid having more than one
SessionFactory

* Plug multiple frameworks into a
“framework coordinator” which provides
the SessionFactory and
TransactionManager

* Not completely black box but not too bad.



m
ThreadLocals

* Variables that are bound to the thread
* Java frameworks use these regularly

* In a thread-pooling environment reliable
cleanup is absolutely essential

* CF does not provide reliable cleanup for
ColdFusion code



- © CrF.Objectivel
ThreadlLocals (ctd)

* Do not initialize Java frameworks from
ColdFusion

* Do transaction cleanup etc at the
ServletContext level



- ¢ CF.Objectivel

Classloader globals

* Entities that are global within a classloader
i.e. within the whole of the CF server

 Static variables and methods
* Aspectd aspects



ﬁ' % CF.Objectivel

Classloader globals (ctd)

* Any use of Aspectd AOP within Spring can
leak

* Once again, can't “black box” Spring
contexts

* Can solve via a custom classloader (e.qg.
Javal.oader)



T CF.Objectivel)

CF deployment environment

Java

JRun

ColdFusion Java web app

Servlet filters

CFMServlet

CFML code

CreateObject(“java’,...) classes

Javal.oader classes

Other servlets




= T CrF.Objectivel)
At the servlet level

* Load the Spring context

* Use the Spring OSIV filter to make a
Hibernate session available

* Create a transaction filter to clean up
dangling transactions

* Put the Spring context into the Request
scope



= ¢ CF.Objectivel

At the servlet level (ctd)

* Our domain classes must be on the Jrun
classpath, NOT the CF classpath

* That means we can't CreateObject() them

* All access to domain is via
Request.applicationContext

* Some issues with XML parsers



g ® Cr.Objectivel
At the CFML level

* Grab a service object from the Spring
context

* Access the domain via transactional
service methods

* May also explicitly create a transaction for
ad hoc manipulation of domain objects



= | ¥ CF.Objectivel

Show code

* Hibernate's transitive persistence

* Spring AOP DI into transients

* Spring AOP transaction manager

* Spring “open session in view”

* Spring context hierarchy for multiple
domain models



m
Conclusions

* These frameworks come from the JEE
world

* Slot them into the JEE stack where they
expect to go, and everything is fine

* Ignoring the Java environment underlying

ColdFusion is a luxury you can no longer
afford.



- T CF.Objectivel)

Questions

jmetcher@gmail.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

